

Introduction & Motivation

- deep-learning models is o Interpretability of demanded in high-stakes applications, e.g., disease diagnosis and autonomous driving.
- ProtoPNet achieves similarity-based classification by measuring how strongly parts of a test image look like the training prototypes.
- ProtoPNet tends to learn trivial prototypes, due to the co-effects of clustering and separation training losses.

• We make an analogy between the prototype learning from ProtoPNet and support vector learning from SVM, and propose to learn support prototypes that benefit classification accuracy and interpretability.

Learning Support and Trivial Prototypes for Interpretable Image Classification

Chong Wang, Yuyuan Liu, Yuanhong Chen, Fengbei Liu, Yu Tian, Davis J. McCarthy, Helen Frazer, Gustavo Carneiro

Method

- A support ProtoPNet branch to utilize support prototypes, capturing hard-to-learn visual patterns. (closeness)
- A trivial ProtoPNet branch to employ trivial prototypes, capturing easy-to-learn visual features. (discrimination) ST-ProtoPNet: ensemble classification interpretation by the two complementary sets of prototypes.

- Dataset
- Fine-grained image recognition tasks Stanford Cars, and Stanford Dogs.
- **Evaluation metrics:** Ο

Classification: top-1 accuracy

Interpretability: CH, OIRR, IoU, and DAUC

highly

interpretable

$$\mathbf{p}_{r} \in \mathcal{P}_{c_2} \mathbf{p}_{m}^{\mathrm{T}} \mathbf{p}_{r}$$

$$\sum_{n \in \mathcal{P}_{c_2}} \mathbf{p}_m^{\mathrm{T}} \mathbf{p}_n$$

Classification Accuracy

C

Method	CUB					Cars						
	VGG16	VGG19	ResNet34	ResNet152	Dense121	Dense161	VGG16	VGG19	ResNet34	ResNet152	Dense121	Dense 161
Baseline	73.3 ± 0.2	74.7 ± 0.4	82.2 ± 0.3	80.8 ± 0.4	81.8 ± 0.1	82.1 ± 0.2	87.3 ± 0.4	88.5 ± 0.3	92.6 ± 0.3	92.8 ± 0.4	92.0 ± 0.3	92.5 ± 0.3
ProtoPNet [4]	77.2 ± 0.2	77.6 ± 0.2	78.6 ± 0.1	79.2 ± 0.3	79.0 ± 0.2	80.8 ± 0.3	88.3 ± 0.2	89.4 ± 0.2	88.8 ± 0.1	88.5 ± 0.3	87.7 ± 0.1	89.5 ± 0.2
TesNet [53]	81.3 ± 0.2	81.4 ± 0.1	82.8 ± 0.1	82.7 ± 0.2	84.8 ± 0.2	84.6 ± 0.3	90.3 ± 0.2	90.6 ± 0.2	90.9 ± 0.2	92.0 ± 0.2	91.9 ± 0.3	92.6 ± 0.3
Trivial ProtoPNet	80.8 ± 0.2	81.2 ± 0.2	82.5 ± 0.2	83.1 ± 0.3	83.9 ± 0.3	84.6 ± 0.3	90.1 ± 0.2	90.7 ± 0.2	91.1 ± 0.2	91.5 ± 0.2	91.4 ± 0.3	92.4 ± 0.3
Support ProtoPNet	81.7 ± 0.2	81.8 ± 0.3	83.0 ± 0.1	83.6 ± 0.2	84.7 ± 0.2	85.2 ± 0.3	90.9 ± 0.2	90.8 ± 0.2	91.0 ± 0.2	91.8 ± 0.2	91.7 ± 0.2	92.7 ± 0.3
ST-ProtoPNet (ours)	82.9 ± 0.2	83.2 ± 0.2	83.5 ± 0.1	84.1 ± 0.2	85.4 ± 0.2	86.1 ± 0.2	91.1 ± 0.2	91.7 ± 0.2	91.4 ± 0.1	92.0 ± 0.2	92.3 ± 0.3	92.7 ± 0.2

Prototype Visualization and Analysis

Interpretable Reasoning of ST-ProtoPNet

Testing image	Prototype	Training image with prototype	Activation map	Similarity score
				5.142
			i	4.901 :
				4.368
	A STATISTICS	Curvidu 2		4.206

Measuring Interpretability based on Localisation

Metric GradCAM [43] ProtoPNet [4] TesNet [53] DefProto [11] TrvProto SptProto ST-Pr	
	oto
CH $(\%, \uparrow)$ 52.46 48.66 59.38 52.09 63.05 63.87 66.4	3
IoU (%, ↑) 39.91 38.03 36.92 40.77 37.74 42.04 41.0	5
OIRR (%, ↓) 37.01 37.26 38.97 28.68 34.48 28.69 28.0	9
DAUC $(\%, \downarrow)$ 7.01 7.39 5.86 5.99 6.06 5.80 5.74	1

Experimental Results

Findings

- Support prototypes tend to only focus on relevant and share bird parts visually similar features among classes.
- Trivial porotypes focus not only on the relevant bird parts but also the background regions.

Acknowledgement: BRAIx (MRFAI000090) • ARC (FT190100525)