

MICCAI2022

Knowledge Distillation to Ensemble Global and Interpretable Prototype-based Mammogram Classification Models

Chong Wang¹, Yuanhong Chen¹, Yuyuan Liu¹, Yu Tian¹, Fengbei Liu¹, Davis J. McCarthy², Michael Elliott², Helen Frazer³, Gustavo Carneiro¹

¹ Australian Institute for Machine Learning, The University of Adelaide, Adelaide, Australia ² St Vincent's Institute of Medical Research, Melbourne, Australia ³ St Vincent's Hospital Melbourne, Melbourne, Australia

INTRODUCTION

Interpretability is a key factor to the successful translation of deeplearning mammogram classifiers into real-world clinical practice.

- > Prototype-based classifiers provide promising self-interpretable predictions but are less accurate than non-interpretable global whole-image classifiers
- > Poor prototype diversity in prototype-based classifiers

Strategy:

- \succ Integrate a prototype-based classifier with existing global classifiers to form a highly accurate and interpretable ensemble model
- > Distill knowledge from global classifiers to improve the accuracy of the prototype-based classifier
- > A greedy prototype projection strategy to improve prototype diversity

DATA & RESULTS

METHOD

- Interpretable Prototype-based Classifier (ProtoPNet):
- Learn a set of class-specific prototypes $P = \{p_m\}_{m=1}^{M}$ from training samples
- Achieve interpretable classification decisions by comparing local parts of an image with training prototypes

Datesets

Private ADMANI:

- BreastScreen Victoria (Australia) program from 2013 to 2019
- 20592 training images (3262 cancer images, 17330 non-cancer images)
- 2032 validation images (322 cancer images, 1710 non-cancer images)
- 22525 testing images (806 cancer images, 21719 non-cancer images)

410 testing images have tumour annotations to assess cancer localization

Public CMMD:

- Mammograms from 1775 Chinese patients collected from 2012 to 2016
- 2632 cancer images, 2568 non-cancer images
- The dataset is used for evaluating model's generalization ability

Quantitative Results

Methods			AUC		
			ADMANI	CMMD	
DenseNet-121			88.54	82.38	
EfficientNet-B0			89.62	76.41	
Sparse MIL			89.75	81.33	
GMIC			89.98	81.03	
ProtoPNet (DenseNet-121)			87.12	80.23	
ProtoPNet (EfficientNet-B0)			88.30	79.61	
	w/o KD	ProtoPNet	87.32	80.09	
		GlobalNet	88.45	82.42	
$O_{\rm trans}$ (Decee Net 101)		Ensemble	88.87	82.50	
Ours (Denselvet-121)	w/ KD	ProtoPNet	88.35	80.67	
		GlobalNet	88.61	82.52	
		Ensemble	89.54	82.65	
	w/o KD	ProtoPNet	88.63	79.01	
Ours (EfficientNet-B0)		GlobalNet	90.11	76.50	
		Ensemble	90.18	80.45	
	w/ KD	ProtoPNet	89.55	79.86	
		GlobalNet	90.12	76.47	
		Ensemble	90.68	81.65	

Cross-entropy, cluster, and separation losses to train ProtoPNet

$$l_{PPN} = l_{CE} + \lambda_1 l_{CT} + \lambda_2 l_{SP}$$

$$l_{CT} = \frac{1}{B} \sum_{i=1}^{B} \min_{p_m \in P_{y_i}} \min_{z \in Z_i} ||z - p_m||_2^2$$

$$l_{SP} = \max(0, \gamma - \frac{1}{B} \sum_{i=1}^{B} \min_{p_m \notin P_{y_i}} \min_{z \in Z_i} ||z - p_m||_2^2)$$

- **Knowledge Distillation:** 2.
- Enforce ProtoPNet to achieve classification accuracy as high as the non-interpretable global classifier (GlobalNet)

$$l_{KD} = \frac{1}{B} \sum_{i=1}^{B} \max(0, (y_i)^T (\tilde{y}_i^G) - (y_i)^T (\tilde{y}_i^P) + w)$$

Greedy Prototype Projection to Improve Prototype Diversity:

- Create an ordered prototype-image distance dictionary
- Update each prototype with the nearest unused image:

 $p_m \leftarrow \arg \min \|z - p_m\|_2^2$

Prototype Visualization and Interpretable Reasoning

Breast Cancer Localization

Effect of the Greedy Prototype Projection Strategy

Methods	Cosine distance		L2 distance		
	Non-cancer	Cancer	Non-cancer	Cancer	AUC
ProtoPNet w/o greedy projection	0.034	0.061	0.805	0.827	88.11
ProtoPNet w/ greedy projection	0.074	0.094	1.215	1.712	88.30

CONCLUSION & FUTURE PLANS

- Prototype-based interpretability can be integrated with existing CNN classifiers to achieve interpretable and accurate mammogram classification
- Knowledge distillation can improve the classification accuracy of the interpretable prototype-based models
- Prototype-based interpretability can realize accurate localization results using weak image-level labels 3.
- Interest in applying to other medical applications, e.g., multi-class and multi-label classification

Acknowledgement – BRAIx (grant number: MRFAI000090)